Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ru-Qiang Zou^{a,b} and Qiang Xu^{a,b}*

^aNational Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan, and ^bGraduate School of Science and Technology, Kobe University, Nada Ku, Kobe, Hyogo 657-8501, Japan

Correspondence e-mail: q.xu@aist.go.jp

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.006 Å R factor = 0.043 wR factor = 0.111 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. metal-organic papers

Tris(4,4',5,5'-tetramethyl-2,2'-biimidazole)zinc(II) dinitrate

A new six-coordinate monomeric Zn^{II} complex, $[Zn(L)_3]$ -(NO₃)₂, where *L* is 4,4',5,5'-tetramethyl-2,2'-biimidazole (C₁₀H₁₄N₄), has been synthesized and characterized by X-ray diffraction techniques. The Zn^{II} atom, on a twofold axis, has a ZnN₆ distorted octahedral coordination environment. 4,4',5,5'-Tetramethyl-2,2'-biimidazole is bonded as a chelating ligand through its unprotonated N atoms. These discrete monomeric units possesses excellent hydrogenbonding sites which further self-assemble into a threedimensional supramolecular architecture through intermolecular N-H···O and C-H···O hydrogen bonds.

Comment

The unique strength, directionality and complementarity of non-covalent interactions, such as hydrogen bonding and coordination bonding, play an important role in the creation of a variety of molecular architectures (Tadokoro *et al.*, 1999; Lehn, 1995). The building blocks possessing such non-covalent interaction sites can produce one-, two- and three-dimensional molecular arrangements with long-range order (Subramanian & Zaworotko, 1994; Ermer, 1988). We present here a new three-dimensional hydrogen-bonding network with discrete monomeric Zn^{II} building blocks, $[Zn(L)_3](NO_3)_2$, (I), where *L* is 4,4',5,5'-tetramethyl-2,2'-biimidazole.

X-ray structure analysis reveals that (I) is a monomeric Zn^{II} complex (Fig. 1). The coordination geometry around the Zn^{II} atom, which lies on a twofold rotation axis, is octahedral, with Zn-N distances in the range 2.149 (3)–2.208 (2) Å. The 4,4',5,5'-tetramethyl-2,2'-biimidazole ligand is bonded as a chelating ligand through its unprotonated N atoms. A striking structural feature of (I) is the formation of a three-dimensional supramolecular architecture through intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen-bonding interactions (Table 1).

Received 11 April 2005 Accepted 3 May 2005 Online 14 May 2005

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Experimental

Complex (I) was prepared by reacting an acetonitrile solution (15 ml) of zinc(II) nitrate with 4,4',5,5'-tetramethyl-2,2'-biimidazole in a 1:3 ratio. Red block-shaped crystals were recovered by filtration and dried in air. The yield was *ca* 78% (based on Zn). IR (KBr, cm⁻¹): 3232 (*m*), 2980 (*m*), 1696 (*s*), 1517 (*s*), 1456 (*m*), 1200 (*m*), 841 (*m*), 751 (*w*), 624 (*w*) cm⁻¹.

4093 independent reflections 3093 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.116$

 $\theta_{\rm max} = 28.3^\circ$

 $h = -12 \rightarrow 18$

 $k = -18 \rightarrow 15$

 $l = -17 \rightarrow 21$

Crystal data

$[Zn(C_{10}H_{14}N_4)_3](NO_3)_2$	Mo $K\alpha$ radiation		
$M_r = 760.15$	Cell parameters from 6512		
Hexagonal, $P6_4$	reflections		
a = 13.900 (2) Å	$\theta = 2.9-24.1^{\circ}$		
c = 16.809 (3) Å	$\mu = 0.72 \text{ mm}^{-1}$		
V = 2812.7 (8) Å ³	T = 293 (2) K		
Z = 3	Block, red		
$D_x = 1.346 \text{ Mg m}^{-3}$	$0.20\times0.20\times0.15~\text{mm}$		
Data collection			

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1998) $T_{min} = 0.868, T_{max} = 0.898$ 17035 measured reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0565P)^2]$
 $R[F^2 > 2\sigma(F^2)] = 0.043$ where $P = (F_o^2 + 2F_c^2)/3$
 $wR(F^2) = 0.111$ $(\Delta/\sigma)_{max} < 0.001$

 S = 0.96 $\Delta\rho_{max} = 0.68 \text{ e Å}^{-3}$

 4093 reflections
 $\Delta\rho_{min} = -0.31 \text{ e Å}^{-3}$

 254 parameters
 Absolute structure: Flack (1983),

 H-atom parameters constrained
 1683 Friedel pairs

 Flack parameter = -0.027 (13)

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
$N3-H3A\cdotsO1^{i}$	0.86	2.01	2.852 (4)	167	
$N4-H4A\cdots O3^{i}$	0.86	2.01	2.818 (5)	156	
N6-H6A···O2 ⁱⁱ	0.86	2.03	2.849 (5)	157	
N6-H6A···O3 ⁱⁱ	0.86	2.60	3.276 (5)	136	
C9−H9A···O3 ⁱⁱⁱ	0.96	2.47	3.403 (7)	163	
$C9-H9B\cdots O1^{iv}$	0.96	2.51	3.431 (7)	162	
$C10-H10C\cdots O2^{v}$	0.96	2.46	3.235 (6)	138	

Symmetry codes: (i) $x - y, x, z - \frac{1}{3}$; (ii) $y, 1 - x + y, \frac{1}{3} + z$; (iii) 1 - x, 1 - y, z; (iv) $1 - x + y, 2 - x, z - \frac{1}{3}$; (v) x - 1, y, z.

Figure 1

A view of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted. Unlabeled atoms are related to labeled atoms by -x, -y, z.

All H atoms were placed in calculated positions and allowed to ride on their parent atoms [C–H = 0.93 Å and U_{iso} (H) = 1.2 U_{eq} (C)].

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank AIST and Kobe University for financial support.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ermer, O. (1988). J. Am. Chem. Soc. 110, 3747-3754.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Lehn, J.-M. (1995). Supramolecular Chemistry. Weinheim: VCH.

Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357-401.

Tadokoro, M., Isobe, K., Uekusa, H., Ohashi, Y., Toyoda, J., Tashiro, K. & Nakasuji, K. (1999). Angew. Chem. Int. Ed. 38, 95–98.